Произвольный контент

Сумма и вычитание степеней

Содержание

Алгебра 7-9 классы. 14. Решение типовых заданий по теме:

Сумма и вычитание степеней

Подробности Категория: Алгебра 7-9 классы

 Сложение и вычитание дробей с одинаковыми знаменателями

При сложении обыкновенных дробей с одинаковыми знаменателями складывают их числители, а знаменатель оставляют прежним. Например:

Таким же образом складывают любые рациональные дроби с одинаковыми знаменателями:

где а, b и с — многочлены, причем с — ненулевой многочлен.

Это равенство выражает правило сложения рациональных дробей с одинаковыми знаменателями:

чтобы сложить рациональные дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тем же

Вычитание рациональных дробей выполняется аналогично сложению:

Чтобы выполнить вычитание рациональных дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тем же.

Пример 1. Сложим дроби

Пример 2. Вычтем дроби

Пример 3. Упростим выражение

Здесь удобно сложение и вычитание дробей выполнять не последовательно, а совместно:

Сложение и вычитание дробей с разными знаменателями

Сложение и вычитание рациональных дробей с разными знаменателями сводится к сложению и вычитанию рациональных дробей с одинаковыми знаменателями. Для этого данные дроби приводят к общему знаменателю.

Пример 1. Сложим дроби

Знаменатели дробей представляют собой одночлены. Наиболее простым общим знаменателем является одночлен . Коэффициент этого одночлена равен наименьшему общему кратному коэффициентов знаменателей дробей, а каждая переменная взята с наибольшим показателем, с которым она входит в знаменатели дробей. Дополнительные множители к числителям и знаменателям этих дробей соответственно равны .

Имеем

Пример 2. Преобразуем разность

Чтобы найти общий знаменатель, разложим знаменатель каждой дроби на множители:

Простейшим общим знаменателем служит выражение Дополнительные множители к числителям и знаменателям этих дробей соответственно равны b и а.

Имеем

Преобразование рационального выражения, которое является суммой или разностью целого выражения и дроби, сводится к преобразованию суммы или разности дробей.

Пример 3. Упростим выражение

Представим выражение а — 1 в виде дроби со знаменателем 1 и выполним вычитание дробей:

 Умножение дробей. Возведение дроби в степень

При умножении обыкновенных дробей перемножают отдельно их числители и их знаменатели и первое произведение записывают в числителе, а второе — в знаменателе дроби. Например:

Таким же образом перемножают любые рациональные дроби:

где а, b, с и d — некоторые многочлены, причем b и d — ненулевые многочлены. Это равенство выражает правило умножения рациональных дробей:

чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе — знаменателем дроби.

Пример 1. Умножим дробь на дробь

Воспользуемся правилом умножения дробей:

Пример 2. Умножим дробь на дробь

Имеем

Пример 3. Представим произведение в виде рациональной дроби.

Имеем

Пример 4. Умножим дробь на многочлен

При умножении дроби на многочлен этот многочлен записывают в виде дроби и затем применяют правило умножения дробей:

Правило умножения дробей распространяется на произведение трех и более рациональных дробей. Например:

Выясним теперь, как выполняется возведение рациональной дроби в степень.

Рассмотрим выражение , являющейся  n-й степенью  рациональной дроби и докажем, что

По определению степени имеем

Применяя правило умножения рациональных дробей и определение степени, получим

Следовательно , 

Из доказанного тождества следует правило возведения рациональной дроби в степень:

чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй — в знаменателе дроби.

Пример 5. Возведем дробь в третью степень.

Воспользуемся правилом возведения в степень:

Деление дробей

При делении обыкновенных дробей первую дробь умножают на дробь, обратную второй. Например:

Так же поступают при делении любых рациональных дробей:

где а, b, с и d — некоторые многочлены, причем b, c и d — ненулевые многочлены.

Это равенство выражает правило деления рациональных :

чтобы разделить одну дробь на другую, нужно первую дробь умножить на дробь, обратную второй.

Пример 1. Разделим дробь на дробь .

Воспользуемся правилом деления дробей:

Пример 2. Разделим дробь на дробь

Имеем

Пример 3. Разделим дробь на многочлен a + 3.

При делении дроби на многочлен этот многочлен записывают в виде дроби и затем применяют правило деления дробей:

Преобразование рациональных выражений

 Рациональное выражение представляет собой частное от деления суммы рациональных дробей многочлен.

Деление на  можно заменить умножением на дробь Поэтому преобразование данного выражения сводится к сложению дробей и умножению результата на дробь  Вообще преобразование любого рационального выражения можно свести к сложению, вычитанию, умножению или делению рациональных дробей.

Из правил действий с дробями следует, что сумму, разнос произведение и частное рациональных дробей всегда можно предс вить в виде рациональной дроби. Значит, и всякое рациональное выражение можно представить в виде рациональной дроби.

Пример 1. Преобразуем в рациональную дробь выражение

Сначала выполним умножение дробей, затем полученный результат вычтем из многочлена x + 1:

Запись можно вести иначе:

Пример 2. Представим выражение

в виде рациональной дроби.

Сначала сложим дроби, заключенные в скобки, затем найденный результат умножим на дробь и, наконец, к полученному произведению прибавим 1:

Источник: https://forkettle.ru/vidioteka/estestvoznanie/matematika/181-algebra/algebra-7-9-klassy/1878-algebra-7-9-klassy-14-reshenie-tipovykh-zadanij-po-teme-drobnye-ratsionalnye-vyrazheniya

Конспект

Сумма и вычитание степеней

Ключевые слова конспекта: степень с натуральным показателем, основание степени, показатель степени, возведение в степень, дисперсия, умножение и деление степеней, свойства степеней.

Произведение 7 • 7 • 7 • 7 • 7 записывают короче: 75. Выражение вида 75 называют пятой степенью числа 7 (читают: «семь в пятой степени»). В записи 75 число 7, которое означает повторяющийся множитель, называют основанием степени, а число 5, показывающее, сколько раз этот множитель повторяется, называют показателем степени.

Умножим 75 на 73:
75 • 73 = (7 • 7 • 7 • 7 • 7) • (7 • 7 • 7) = 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 = 78.
Показатель степени увеличился на 3. Естественно считать, что 7 = 71. Вообще считают, что первой степенью числа является само число. Например, 181 = 18, 1041 = 104.

Степень с натуральным показателем

✅ Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение аn, равное произведению n множителей, каждый из которых равен а.
Степенью числа а с показателем 1 называют выражение а1, равное а.

По определению

Запись аn читается так: «а в степени n» или «n-я (энная) степень числа а». Для второй и третьей степеней числа используют специальные названия: вторую степень числа называют квадратом, а третью степень — кубом.

Возведение в степень

Нахождение n-й степени числа а называют возведением в n-ю степень.

 Пример 1. Возведём число -3 в четвёртую и пятую степени:
 (-3)4 = (-3) • (-3) • (-3) • (-3) = 81;
 (-3)5 = (-3) • (-3) • (-3) • (-3) • (-3) = -243.

Из свойств умножения следует, что:

  •  при возведении нуля в любую степень получается нуль;
  •  при возведении положительного числа в любую степень получается положительное число;
  •  при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.

 Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором.  Для этого надо выполнить умножение:
 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.

Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения.

Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,17 = 314274,28.

При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.

 Пример 3. Найдём значение выражения -62 + 64 : (-2)5.  Последовательно находим:
1) 62 = 36;
2) (–2)5 = –32;
3) 64 : (–32) = –2;
4) –36 + (–2) = –38.

 Пример 4. Найдём множество значений выражения 5 • (–1)n + 1 + 2, где n N.
Если n — нечётное число, то (-1)n + 1 = 1; тогда 5 • (-1)n + 1 + 2 = 5 • 1 + 2 = 7.
Если n — чётное число, то (-1)n + 1 = -1; тогда  5 • (-1)n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.
Множество значений данного выражения: {-3; 7}.

В рассмотренном примере было указано, что n  N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.

Дисперсия

Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию.

 Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического.

По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю.

Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое

Полученное число и есть дисперсия исходной выборки.

Умножение степеней

Представим произведение степеней а5 и а2 в виде степени:
а5 • а2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а7.
Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.

Если а — произвольное число, m и n — любые натуральные числа, то аm • аn = аm+ n

Докажем это. Из определения степени и свойств умножения следует, что

Доказанное свойство называется основным свойством степени. Оно распространяется на произведение трёх и более степеней. Это нетрудно показать с помощью таких же рассуждений.

Из основного свойства степени следует правило:

  • чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.

Деление степеней

Представим теперь в виде степени частное степеней а8 и а3, где а ≠ 0. Так как а3 • а5 = а8, то по определению частного а8 : а3 = а5.

Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.

Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то аm : аn = аm — n, где а ≠ 0, m ≥ n

Докажем это. Умножим аm — n на аn, используя основное свойство степени:
am – n • an = a(m – n) + n = am – n + n = am

Из доказанного свойства следует правило:

  • чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.

Степень с нулевым показателем

Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.

✅ Определение. Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а0, равное 1.

Например, 50 = 1;   (–6,3)0 = 1. Выражение 00 не имеет смысла.

Это конспект по математике на тему «Степени. Свойства степеней». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B8-%D1%81%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0-%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B5%D0%B9/

Свойства степеней с примерами

Сумма и вычитание степеней

Что значит возвести число a в степень n? Это значит, что нужно перемножить это число само на себя n-ное количество раз. Например, число 2, возведенное в степень три, будет выглядеть, как 2*2*2 и равняться 8-ми. И у этих степеней есть свои свойства.

источник: Яндекс

Свойства степеней с натуральным показателем

  • Основное свойство степени, или свойство произведения степеней применяется при умножении 2х степеней m и n,которые имеют одинаковое основание a. Данное свойство может быть применимо и к произведению трех и более степеней. То есть, если мы захотим, например, возвести число 5 в степень 2 и умножить это на число 5 в степени 6, то нам нужно будет просто сложить степени, и мы получим 5 в степени 8.

am⋅an=a(m+n)

Пример: 52⋅56=58

  • Свойство частного степеней применяется при делении степеней m и n с одинаковым основанием а. В результате основание остается таким же, а из показателя степени в числителе вычитается степень в знаменателе. Возьмем, к примеру, число 15 в девятой степени и поделим его на 15 в третей степени. Чтобы не делать долгих вычислений, воспользуемся свойством частного и вычтем из степени 9 степень 3, и мы получим 15 в шестой степени.

am:an=a(m−n)

Пример: 159:153=156

  • Свойство возведения степени в степень предполагает перемножение степеней, при этом основание остается прежним. Здесь все просто и логично: у нас есть некое число а возведенное в степень 4, и все это нам нужно возвести еще и в третью степень. Пользуясь свойством, мы получаем а в двенадцатой степени.

(am)n=a(m⋅n)

Пример: (a4)3=a12

Реклама Не каждый студент может себе позволить за семестр в ВУЗе отдать100 000 ₽. Но круто, что естьгрантына учебу.Грант-на-вуз.рфэтовозможность учиться на желанной специальности.

По ссылкекаждый получит бонус от300 ₽до100 000 ₽грант-на-вуз.рф

  • При применении свойства степени произведения, каждый множитель возводится в степень, а полученные результаты перемножаются между собой. Также это свойство можно применять и справа налево.

(a · b)n = an · bn

Пример: (3 · 4)5=35 · 45

  • Применяя свойство частного в натуральной степени, и делимое и делитель возводят в степень, а полученный числитель делят на знаменатель.

(a : b)n = an : bn

Пример: (2 : 7)6=26 : 76

  • Свойства сравнения степени с нулем:
  1. если a>0, то при любом натуральном n, an>0. Возьмем а равное 6 и n равную натуральному числу 2, следовательно, 6 в степени 2 будет больше нуля;
  2. при a=0, an=0;
  3. если a0. Например, а= 3, m=1, делаем из степени четное число (умножаем 2 на 1). Следуя этому свойству, получаем, что 3 в степени 2 больше нуля;
  4. если a 0.

Степень с отрицательным показателем

Если нам нужно возвести число а в отрицательную степень n, то мы делим 1 на число в той же степени, только положительной. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени. Другими словами, при отрицательной степени выражение переворачивается.

источник: Яндекс

Свойства степеней с целыми показателями

Тут все просто: для степеней с положительными целыми показателями свойства будут такими же ка вышеперечисленные, так как эти показатели будут являться натуральными. Эти же свойства применяются и для отрицательных и равных нулю показателей степеней. Одно важное замечание: основание не должно ровняться 0.

Реклама Напоминаем про сервисгрант-на-вуз.рф. Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишьот300 ₽до100 000 ₽,перейдя по ссылкегрант-на-вуз.рф!

Свойства степеней с рациональными и иррациональными показателями

Они будут такими же, как и свойства для степеней с целыми показателями. Но здесь должно соблюдаться одно правило: основания таких степеней должно быть больше нуля.

Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:
https://zen.yandex.ru/fgbnuac— последние научные достижения и лучшие образовательные практики.Хорошего дня и не болейте.

Источник: https://zen.yandex.ru/media/studystudent/svoistva-stepenei-s-primerami-5ea2ce380157077c4ffa9fb1

Сложение, вычитание, умножение, и деление степеней

Сумма и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 — bn и h5 -d4 есть a3 — bn + h5 — d4.

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a2 и 3a2 равна 5a2.

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степениодинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a2 и a3 есть сумма a2 + a3.

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a43h2b65(a — h)6
Вычитаем-6a44h2b62(a — h)6
Результат8a4-h2b63(a — h)6

Или:
2a4 — (-6a4) = 8a4
3h2b6 — 4h2b6 = -h2b6
5(a — h)6 — 2(a — h)6 = 3(a — h)6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a3 на b2 равен a3b2 или aaabb.

Первый множительx-33a6y2a2b3y2
Второй множительam-2xa3b2y
Результатamx-3-6a6xy2a2b3y2a3b2y

Или:
x-3 ⋅ am = amx-3
3a6y2 ⋅ (-2x) = -6a6xy2
a2b3y2 ⋅ a3b2y = a2b3y2a3b2y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a5b5y3.

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a2.a3 = aa.aaa = aaaaa = a5.

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, an.am = am+n.

Для an, a берётся как множитель столько раз, сколько равна степень n;

И am, берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a2.a6 = a2+6 = a8. И x3.x2.x = x3+2+1 = x6.

Первый множитель4anb2y3(b + h — y)n
Второй множитель2anb4y(b + h — y)
Результат8a2nb6y4(b + h — y)n+1

Или:
4an ⋅ 2an = 8a2n
b2y3 ⋅ b4y = b6y4
(b + h — y)n ⋅ (b + h — y) = (b + h — y)n+1

Умножьте (x3 + x2y + xy2 + y3) ⋅ (x — y).
Ответ: x4 — y4.
Умножьте (x3 + x — 5) ⋅ (2×3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a-2.a-3 = a-5. Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y-n.y-m = y-n-m.

3. a-n.am = am-n.

Если a + b умножаются на a — b, результат будет равен a2 — b2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a2 — y2.
(a2 — y2)⋅(a2 + y2) = a4 — y4.
(a4 — y4)⋅(a4 + y4) = a8 — y8.

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a3b2 делённое на b2, равно a3.

Делимое9a3y4a2b + 3a2d⋅(a — h + y)3
Делитель-3a3a2(a — h + y)3
Результат-3y4b + 3d

Или:$\frac{9a3y4}{-3a3} = -3y4$$\frac{a2b + 3a2}{a2} = \frac{a2(b+3)}{a2} = b + 3$

$\frac{d\cdot (a — h + y)3}{(a — h + y)3} = d$

Запись a5, делённого на a3, выглядит как $\frac{a5}{a3}$. Но это равно a2. В ряде чисел
a+4, a+3, a+2, a+1, a0, a-1, a-2, a-3, a-4.
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y3:y2 = y3-2 = y1. То есть, $\frac{yyy}{yy} = y$.

И an+1:a = an+1-1 = an. То есть $\frac{aan}{a} = an$.

Делимоеy2m8an+m12(b + y)n
Делительym4am3(b + y)3
Результатym2an4(b +y)n-3

Или:
y2m : ym = ym
8an+m : 4am = 2an
12(b + y)n : 3(b + y)3 = 4(b +y)n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a-5 на a-3, равен a-2.
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h2:h-1 = h2+1 = h3 или $h2:\frac{1}{h} = h2.\frac{h}{1} = h3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a4}{3a2}$ Ответ: $\frac{5a2}{3}$.

2. Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю.
a2.a-4 есть a-2 первый числитель.
a3.a-3 есть a0 = 1, второй числитель.
a3.a-4 есть a-1, общий числитель.
После упрощения: a-2/a-1 и 1/a-1.

4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.

5. Умножьте (a3 + b)/b4 на (a — b)/3.

6. Умножьте (a5 + 1)/x2 на (b2 — 1)/(x + a).

7. Умножьте b4/a-2 на h-3/x и an/y-3.

8. Разделите a4/y3 на a3/y2. Ответ: a/y.

9. Разделите (h3 — 1)/d4 на (dn + 1)/h.

Источник: https://www.math10.com/ru/algebra/slogenie-vichitanie-umnozhenie-delenie-stepeney.html

Свойства степени

Сумма и вычитание степеней
Что такое степень числа Свойства степени Возведение в степень дроби

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

Примеры.

  • Упростить выражение. b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
  • Представить в виде степени. 615 · 36 = 615 · 62 = 615 · 62 = 617
  • Представить в виде степени. (0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.

Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».

Примеры.

  • Записать частное в виде степени (2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
  • Вычислить. = 113 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней. 38 : t = 34t = 38 : 34t = 38 − 4t = 34 Ответ: t = 34 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

  • Пример. Упростить выражение. 45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
  • Пример. Найти значение выражения, используя свойства степени. = = = = = 211 − 5 = 2 6 = 64

Важно!

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4

Будьте внимательны!

Запомните!

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(an)m = an · m, где «a» — любое число, а «m», «n» — любые натуральные числа.

  • Пример. (a4)6 = a4 · 6 = a24
  • Пример. Представить 320 в виде степени с основанием 32.По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Запомните!

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b)n = an · bn, где «a», «b» — любые рациональные числа; «n» — любое натуральное число.

  • Пример 1. (6 · a2 · b3 · c )2 = 62 · a2 · 2 · b3 · 2 · с 1 · 2 = 36 a4 · b6 · с 2
  • Пример 2. (−x2 · y)6 = ( (−1)6 · x2 · 6 · y1 · 6) = x12 · y6

Важно!

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(an · bn)= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить. 24 · 54 = (2 · 5)4 = 104 = 10 000
  • Пример. Вычислить. 0,516 · 216 = (0,5 · 2)16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 45 · 32 = 43 · 42 · 32 = 43 · (4 · 3)2 = 64 · 122 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

421 · (−0,25)20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25))20 = 4 · (−1)20 = 4 · 1 = 4 Запомните!

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b)n = an : bn, где «a», «b» — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней. (5 : 3)12 = 512 : 312

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Источник: http://math-prosto.ru/?page=pages%2Fstepeni%2Fstepeni2.php

Свойства степени с одинаковыми основаниями

Сумма и вычитание степеней

Понятие степени в математике вводится еще в 7 классе на уроке алгебры. И в дальнейшем на протяжении всего курса изучения математики это понятие активно используется в различных своих видах. Степени — достаточно трудная тема, требующая запоминания значений и умения правильно и быстро сосчитать.

Для более быстрой и качественной работы со степенями математики придумали свойства степени. Они помогают сократить большие вычисления, преобразовать огромный пример в одно число в какой-либо степени. Свойств не так уж и много, и все они легко запоминаются и применяются на практике.

Поэтому в статье рассмотрены основные свойства степени, а также то, где они применяются.

Свойства степени

Мы рассмотрим 12 свойств степени, в том числе и свойства степеней с одинаковыми основаниями, и к каждому свойству приведем пример. Каждое из этих свойств поможет вам быстрее решать задания со степенями, а так же спасет вас от многочисленных вычислительных ошибок.

1-е свойство.

а0 = 1

Про это свойство многие очень часто забывают, делают ошибки, представляя число в нулевой степени как ноль.

2-е свойство.

а1 = а

3-е свойство.

аn * am = a(n+m)

Нужно помнить, что это свойство можно применять только при произведении чисел, при сумме оно не работает! И нельзя забывать, что это, и следующее, свойства применяются только к степеням с одинаковыми основаниями.

4-е свойство.

an/am = a(n-m)

Если в знаменателе число возведено в отрицательную степень, то при вычитании степень знаменателя берется в скобки для правильной замены знака при дальнейших вычислениях.

Свойство работает только при делении, при вычитании не применяется!

5-е свойство.

(an)m = a(n*m)

6-е свойство.

a-n = 1/an

Это свойство можно применить и в обратную сторону. Единица деленная на число в какой-то степени есть это число в минусовой степени.

7-е свойство.

(a*b)m = am * bm

Это свойство нельзя применять к сумме и разности! При возведении в степень суммы или разности используются формулы сокращенного умножения, а не свойства степени.

8-е свойство.

(a/b)n = an/bn

9-е свойство.

а½ = √а

Это свойство работает для любой дробной степени с числителем, равным единице, формула будет та же, только степень корня будет меняться в зависимости от знаменателя степени.

Также это свойство часто используют в обратном порядке. Корень любой степени из числа можно представить, как это число в степени единица деленная на степень корня. Это свойство очень полезно в случаях, если корень из числа не извлекается.

10-е свойство.

(√а)2 = а

Это свойство работает не только с квадратным корнем и второй степенью. Если степень корня и степень, в которую возводят этот корень, совпадают, то ответом будет подкоренное выражение.

11-е свойство.

n √an = a

Это свойство нужно уметь вовремя увидеть при решении, чтобы избавить себя от огромных вычислений.

12-е свойство.

am/n = n √am

Каждое из этих свойств не раз встретится вам в заданиях, оно может быть дано в чистом виде, а может требовать некоторых преобразований и применения других формул. Поэтому для правильного решения мало знать только свойства, нужно практиковаться и подключать остальные математические знания.

Применение степеней и их свойств

Они активно применяются в алгебре и геометрии. Степени в математике имеют отдельное, важное место. С их помощью решаются показательные уравнения и неравенства, а так же степенями часто усложняют уравнения и примеры, относящиеся к другим разделам математики.

Степени помогают избежать больших и долгих расчетов, степени легче сокращать и вычислять. Но для работы с большими степенями, либо со степенями больших чисел, нужно знать не только свойства степени, а грамотно работать и с основаниями, уметь их разложить, чтобы облегчить себе задачу.

Для удобства следует знать еще и значение чисел, возведенных в степень. Это сократит ваше время при решении, исключив необходимость долгих вычислений.

Особую роль понятие степени играет в логарифмах. Так как логарифм, по сути своей, и есть степень числа.

Формулы сокращенного умножения — еще один пример использования степеней. В них нельзя применять свойства степеней, они раскладываются по особым правилам, но в каждой формуле сокращенного умножения неизменно присутствуют степени.

Так же степени активно используются в физике и информатике. Все переводы в систему СИ производятся с помощью степеней, а в дальнейшем при решении задач применяются свойства степени.

В информатике активно используются степени двойки, для удобства счета и упрощения восприятия чисел.

Дальнейшие расчеты по переводам единиц измерения или же расчеты задач, так же, как и в физике, происходят с использованием свойств степени.

Еще степени очень полезны в астрономии, там редко можно встретить применение свойств степени, но сами степени активно используются для сокращения записи различных величин и расстояний.

Степени применяют и в обычной жизни, при расчетах площадей, объемов, расстояний.

С помощью степеней записывают очень большие и очень маленькие величины в любых сферах науки.

Показательные уравнения и неравенства

Особое место свойства степени занимают именно в показательных уравнениях и неравенствах. Эти задания очень часто встречаются, как в школьном курсе, так и на экзаменах. Все они решаются за счет применения свойств степени. Неизвестное всегда находится в самой степени, поэтому зная все свойства, решить такое уравнение или неравенство не составит труда.

Источник: https://FB.ru/article/428726/svoystva-stepeni-s-odinakovyimi-osnovaniyami

Действия со степенями: правила вычисления степеней с разными основаниями или натуральными показателями по математике и порядок этого

Сумма и вычитание степеней

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Степень, свойства и действия со степенями, сложение, умножение, деление отрицательных степеней, степень с натуральным показателем, правила и формулы

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом: an = a * a * a * …an.

Причем, левая часть уравнения будет читаться, как a в степ. n.

Например:

  • 23 = 2 в третьей степ. = 2 * 2 * 2 = 8,
  • 42 = 4 в степ. два = 4 * 4 = 16,
  • 54 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625,
  • 105 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000,
  • 104 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло2-ая ст-нь3-я ст-нь
111
248
3927
41664
525125
636216
749343
864512
981279
101001000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • an * am = (a)(n+m),
  • an : am = (a)(n-m),
  • (ab ) m=(a)(b*m).

Проверим на примерах:

  • 23 * 22 = 8 * 4 = 32. С другой стороны 25 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично:

  • 23 : 22 = 8 / 4 =2. Иначе 23-2 = 21 =2.
  • (23)2 = 82 = 64. А если по-другому? 26 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 33 + 24 = 27 + 16 = 43,
  • 52 – 32 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 3)2 = 22 = 4.
  • А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3)3 = 83 = 512.

Как производить вычисления в более сложных случаях? Порядок тот же:

  • при наличии скобок – начинать нужно с них,
  • затем возведение в степень,
  • потом выполнять действия умножения, деления,
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: am/n.
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b)n = an * bn.
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

  • A0 = 1, 10 = 1, 20 = 1, 3.150 = 1, (-4)0 = 1… и т. д.
  • A1 = A, 11 = 1, 21 = 2, 31 = 3 … и т. д.

Кроме того, если (-a)2n+2, n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот. Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Источник: https://rgiufa.ru/matematika-fizika-himiya/kakie-vozmozhny-dejstviya-so-stepenyami.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.