Произвольный контент

Примеры решения задач по закону кирхгофа

Содержание

Закон Кирхгофа

Примеры решения задач по закону кирхгофа

Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

  • Ветвь – участок электрической цепи с одни и тем же током.
  • Узел – точка соединения трех или более ветвей.
  • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.

При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Рис. 1. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда).Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 2. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

  • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
  • Тогда мы можем записать: I1 = I2 + I3.
  • Аналогично для узла B: I3 = I4 + I5.
  • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
  • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
  • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
  • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
  • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи.

Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Уравнение для переменных напряжени —

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

https://www.youtube.com/watch?v=bR_cJDOMjxo

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

Дано:Решение:
  • Используя первый закон Кирхгофа, запишем уравнение для цепи. Сумма токов сходящихся в узле равна нулю. Примем входящие токи положительными, а выходящие отрицательными. Тогда:
  • Используя второй закон Кирхгофа составим уравнения для первого и второго контуров цепи.
  • Направления обхода произвольны, при этом если направление тока через резистор совпадает с направлением обхода, знак «+», если иначе, то «-». С источниками ЭДС так же.
  • Для первого контура токи I1 и I3 совпадают с направлением обхода, ЭДС Е1 также совпадает, то есть берем их со знаком «+».
  • Для первого и второго контуров по второму закону Кирхгофа получаем следующие уравнения:
  • Таким образом, получаем систему из трех уравнений, являющуюся решением задачи:

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Источник: https://zakon-oma.ru/zakon-kirhgofa.php

Правила (законы) Кирхгофа простыми словами: формулировки и расчеты

Примеры решения задач по закону кирхгофа

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях.

В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический  заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.
Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений».

Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода.

( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Рис. 5. Пример для расчёта Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

https://www.youtube.com/watch?v=LzqkLKOyid8

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Источник: https://www.asutpp.ru/pravila-zakony-kirhgofa-prostymi-slovami.html

Законы Кирхгофа » Решение ТОЭ

Примеры решения задач по закону кирхгофа

Задание 1 Линейные электрические цепи постоянного тока

ОГУ

Вариант 9

Сформулировать уравнения по законам Кирхгофа в общем виде. Определить токи ветвей методом контурных токов. Составить баланс мощностей. Нарисовать диаграмму распределения потенциала для внешнего контура электрической цепи.

Задачи для самостоятельного решения

В электрической цепи с двумя источниками синусоидальной ЭДС одна из катушек имеет индуктивные связи с двумя другими катушками.

Требуется составить систему уравнений по законам Кирхгофа для определения комплексных действующих значений токов ветвей.

Расчет сложной цепи постоянного тока на основании законов Кирхгофа, методом контурных токов, методом наложения, методом эквивалентного генератора. Построение потенциальной диаграммы

Для электрической цепи (рис. 0) выполнить следующее:

1) составить на основании законов Кирхгофа систему уравнений для определения токов во всех ветвях схемы;

2) определить токи во всех ветвях схемы, используя метод контурных токов;

3) определить токи во всех ветвях схемы на основании метода наложения;

4) составить баланс мощностей для заданной схемы;

5) результаты расчетов токов по пунктам 2 и 3 представить в виде таблицы и сравнить:

6) определить ток во второй ветви методом эквивалентного генератора;

7) построить потенциальную диаграмму для любого замкнутого контура, включающего обе ЭДС.

А.В. Бубнов, В.Л. Федоров. Расчетно-графическая работа № 2 Расчет электрических цепей синусоидального тока, НвГУ, Нижневартовск 2011

Для электрической схемы, соответствующей номеру варианта, выполнить следующее:

1. На основании законов Кирхгофа составить в общем виде систему уравнений для расчета токов во всех ветвях цепи, записав ее в двух формах:

а) дифференциальной;

б) символической.

2. Определить комплексы действующих значений токов во всех ветвях, воспользовавшись одним из методов расчета линейных электрических цепей.

3. По результатам расчета в п.2 произвести проверку выполненных расчетов при помощи законов Кирхгофа.

4. Определить комплексную мощность источника питания и проверить баланс мощностей.

5. Определить показания ваттметра.

6. Используя данные расчетов, записать мгновенные значения токов и напряжений.

7. Построить топографическую диаграмму, совмещенную с векторной диаграммой токов. При этом потенциал точки а, указанной на схеме, принять равным нулю.

Задания для самостоятельной работы обучающихся

Задача 1 Расчет электрической цепи постоянного тока

1. Для электрической схемы, изображенной на рис.0, по заданным сопротивлениям и ЭДС найти все токи способами:

а) используя законы Кирхгофа;

б) методом контурных токов;

в) методом узловых напряжений;

г) определить ток в резисторе R6 методом эквивалентного генератора.

Свести результаты расчетов в одну таблицу.

2. Определить показание вольтметра.

3. Составить баланс мощностей.

Скачать расчет электрической цепи постоянного тока

zadacha1-raschet-cepi-postoyannogo-toka.pdf [741,77 Kb] (cкачиваний: 582)

Задача 1.10 Определить ток в ветви с сопротивлением R3, используя законы Кирхгофа, если: E1 = 54 В, E2 = 162 В, R1 = R2 = 9 Ом, R3 = 40 Ом, внутренние соапотивления источников ЭДС r1 = r2 = 1 Ом.

Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985

Задача 1 Расчет электрической цепи постоянного тока

Для электрической схемы, изображенной на рисунке, по заданным сопротивлениям и ЭДС выполнить следующее:

1) составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;

2) найти все токи, пользуясь методом контурных токов;

3) проверить правильность решения, применив метод узлового напряжения. Предварительно упростить схему, заменив треугольник сопротивления R4, R5 и R6 эквивалентной звездой. Начертить расчетную схему с эквивалентной звездой и показать на ней токи;

4) определить ток в резисторе R6 методом эквивалентного генератора;

5) определить показание вольтметра и составить баланс мощностей для заданной схемы;

6) построить в масштабе потенциальную диаграмму для внешнего контура.

Скачать решение Задачи 1 Расчет электрической цепи постоянного тока reshenie-zadachi-raschet-elektricheskoy-cepi-postoyannogo-toka.pdf [777,31 Kb] (cкачиваний: 1182)

РАСЧЕТ ОДНОФАЗНОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА СИМВОЛИЧЕСКИМ МЕТОДОМ

Заданы параметры цепи и напряжение на одном из участков цепи, включенном между точками а-б.

Требуется:

  1. Определить токи и напряжения на всех участках цепи символическим методом.
  2. Записать выражения для мгновенных значений всех токов и напряжений.
  3. Сделать проверку правильности решения по законам Кирхгофа.
  4. Составить баланс активных и реактивных мощностей.
  5. Построить волновые диаграммы напряжения, тока и мощности на входе цепи.
  6. Построить векторную диаграмму токов и напряжений.

Скачать решение варианта 8 РАСЧЕТ ОДНОФАЗНОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА СИМВОЛИЧЕСКИМ МЕТОДОМ

rgr2-raschet-odnofaznoy-cepi-sinusoidalnogo-toka-simvolicheskim-metodom-var8.pdf [553,43 Kb] (cкачиваний: 427)

МАИ (НИУ) Кафедра 405, ОТЦ, Часть I, Билет № 4, Законы Кирхгофа

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра 405, Дисциплина ОТЦ, Часть I

Билет № 4

Законы Кирхгофа для напряжения и тока. Для заданной цепи составить уравнения по законам Кирхгофа и найти токи ветвей.

Источник: http://xn----etb8afbn2f.xn--p1ai/tags/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B+%D0%9A%D0%B8%D1%80%D1%85%D0%B3%D0%BE%D1%84%D0%B0/

Законы Кирхгофа простыми словами: определения и формулы

Примеры решения задач по закону кирхгофа

По всем проводникам, которые являются частью электрической цепи, протекает электрический ток. При проведении расчётов не редкостью являются случаи, когда необходимо вычислить параметры тока и напряжения в цепях сложной формы, то есть в тех, где имеются разветвления. Для получения точных расчётов применяют правила Кирхгофа, которые иногда называют законами.

Используя их вместе с законами Ома, можно с легкостью определять параметры независимых контуров в самых разветвленных и сложных цепях.

Важным преимуществом данных законов является то, что не нужно использовать глубокие расчёты, благодаря приведенным алгоритмам посчитать сможет даже неопытный физик, сложные и многоуровневые расчёты превращаются в простые односложные сложения.

Закон Кирхгофа своими словами, кратко и понятно для чайников

История возникновения закона начинается с первого упоминания немецкого учёного Кирхгофа в XIX веке. В этот период в стране проходили репрессии, остро ощущалась нехватка новых технологий.

Учёные искали решения, способные ускорить развитие промышленности. Вышеупомянутый учёный занимался исследованиями в области электричества. Он точно осознавал, что будущее за технологиями.

Однако была проблема: как провести точные математические вычисления в цепях сложной формы. Тогда и возник закон.

К узлу подходят два провода, в то время как отходит всего один. Значение тока, который протекает по направлению от узла, равняется сумме протекающего по оставшимся двум проводникам, иными словами, идущим к нему.

Правило, о котором идёт речь в статье, даёт понятное объяснение тому, что в противном случае происходило бы накопление заряда, однако такого никогда не бывает.

Каждый физик на практике знает, что любую сложную цепь можно разделить на небольшие участки.

Возникает другая сложность: трудно определить путь, по которому он проходит. Более того, важно понимать, что на различных участках сопротивления разные, а из этого следует, что энергия будет распределяться неравномерно.

Первый закон Кирхгофа: определение

Первый закон, или, как он известен некоторым, правило, Густава Кирхгофа был выведен на основании другого закона – сохранения заряда. Как уже было упомянуто раннее, физик осознавал, что в узле надолго заряд задержаться не сможет, так как распределится по ветвям контура, которые образуют эти соединения.

Важно! У Кирхгофа было предположение, которое он впоследствии сумел доказать, благодаря проведенным экспериментам, что количество зарядов, оказавшихся в узле, равняется количеству тока, вытекающего из него.

Схема первого закона Кирхгофа

На рисунке показана схема, состоящая из нескольких контуров. Все части рисунка подписаны. Итак, закон № 1 утверждает, что сумма токов в любом узле абсолютно любой электрической цепи равняется нулю.

Согласно правилу, входящий ток равен сумме выходящих, поэтому I1 = I2 + I3. Узлами сети называются такие участки, в которых соединяются несколько проводников. Ток, который оказывается в узле, обозначается стрелкой, направленной к узлу, в то время вытекающий ток – стрелкой от узла.

Таким образом, обозначение воспринимается проще в любой задаче.

Наглядно это показано на картинке.

Первый закон Кирхгофа

На основании вышесказанного запишем уравнение первого закона ученого:

I1 + I2 − I3 − I4 − I5 = 0

Эта же формула может быть записана в более сокращенном виде:

I1 + I2 = I3 + I4 + I5

Важно! Положительные или же противоположные – отрицательные – знаки токам присвоены в условном порядке. Их можно поменять, значение не поменяется.

Для примера разберём схему, изображённую на картинке выше.

Источник питания может быть абсолютно любой природы, им могут быть пальчиковые батарейки или же полноценный блок питания с возможностью регулировки. Итак, следуя первому закону, верным будет уравнение:

I1 − I2 − I3 = 0 или же I1 = I2 + I3

Чтобы продолжить измерения, необходимо в место на схеме, где указан амперметр, подключить мультиметр, который покажет, что закон полностью работает.

Формула для электрической и магнитной цепи

При проведении расчётов используют вышеупомянутые законы.

Первый закон для магнитных цепей вытекает из принципа непрерывности магнитного потока, который известен ещё из курса физики.

Второй же закон, если разобрать по частям, понятно, является иной формой записи закона полного тока.

Прежде чем записать уравнения, необходимо в любом порядке остановить свой выбор на положительном направлении потоков в ветвях, аналогичное действие необходимо провести с напряжением обхода контуров.

Если направление магнитного потока на определённом участке совпадает с направлением обхода, то магнитное напряжение на этом участке будет положительным, если же оно определяется как противоположное, то значение будет отрицательным.

Схожий случай, если МДС совпадает с направлением обхода, тогда знак положительный, в противном случае – отрицательный.

Закон для магнитных цепей

Для примера рассмотрим схему. Левая ветвь пусть будет первой, все относящиеся к ней величины будут записаны с индексом 1. Средняя весть будет второй, и величины получат индекс 2. Соответственно, величины правой ветви – индекс 3.

В произвольном порядке выберем направление потоков в ветвях. Предположим, что направление всех потоков будет вверх. Следуя первому закону, необходимо составить для каждого узла цепи уравнение. В цепи всего два узла, соответственно, составим всего одно уравнение:

Ф1 + Ф2 + Ф3 = 0

Далее используем второй закон Кирхгофа, по которому нужно составить столько уравнений, сколько ветвей, не учитывая числа уравнений, составленных по первому закону.

Итак, запишем уравнения. Первое будет предназначено для контура, образованного первой и второй ветвями, второе – для контура, который будет образован первой и третьей ветвями.

Перед тем как составлять уравнения по второму закону, нужно выбрать положительное направление обхода контуров. Контуры будем обходить по часовой стрелке.

Итак, итоговое уравнение имеет вид:

H1l1 + Hδ1δ1 − H2l2 − Hδ2δ2 = I1w1 − I2w2

В левую часть уравнения были включены слагаемые со знаком плюс, потому что на первом участке поток направлен соответственно обходам контура, а слагаемые – с отрицательным знаком, потому что поток направлен в противоположную обходу контура сторону.

Второй закон Кирхгофа: определение

Второй закон вызывает у многих вопросы, так как он несколько труднее первого, но этот миф легко можно развеять, объяснив принцип работы. Для начала необходимо разобрать определение закона, который звучит таким образом: в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех пассивных элементах цепи.

Формулировка определения несколько затрудняет его понимание, поэтому можно упростить: сумма ЭДС в замкнутом контуре равняется сумме падений напряжений. Так намного проще и понятнее.

Закон напряжения и формула для магнитной цепи

Формула, которая выражает этот закон, примет такой вид:

Формула второго закон Кирхгофа

В качестве примера возьмём самый элементарный и понятный для всех случай. Нам понадобится взять батарейку и резистор – всё в одном экземпляре. Так как резистор в единичном количестве, так же как и батарейка, то ЭДС батарейки будет равняться 1,5 ватт, и это равно падению напряжения на резисторе.

Если для примера взять уже два резистора и подключить их к батарейке, то 1,5 ватт будут распределяться равномерно на обоих резисторах, то есть на каждом окажется по 0,75 ватт. Если взять уже три резистора по 1 кОм, то падение напряжения будет на них уже по 0,5 ватт. Логика расчётов сохраняется в любом случае. Формула примет вид:

ФормулаЕ1 = IR1 + IR2 + IR3
Преобразование1,5 Вт = 0,5 Вт + 0,5 Вт + 0,5 Вт
Итог1,5 Вт = 1,5 Вт

Важно! Второй закон будет работать независимо от того, сколько использовано источников питания и нагрузок. Не влияет на расчёты и место их расположения в контуре схемы. Так что даже у разных схем решение может быть одинаковым, но должно быть соблюдено условие – количество элементов должно быть идентичным.

Закон Кирхгофа для теплового излучения

Данный закон имеет другое название «третий закон». Сперва для лучшего понимания введем понятие теплового излучения.

Принято называть тепловым излучение электромагнитное излучение, возникающее благодаря чужеродной энергии вращательного и колебательного движения атомов, молекул. Данное явление можно обнаружить абсолютно у всех тел, имеющих температуру не равняющуюся нулю или меньше.

Основной количественной характеристикой теплового излучения выступает энергетическая светимость. Она должна быть вычислена одной из первых или же указана в условиях. Рассчитать её самостоятельно весьма проблематично.

Её значение не постоянное, оно может меняться в зависимости от определенных характеристик: оказывает влияние температура окружающей среды, а также уровень нагретости тела. Имеет значение и длина, чем длиннее — тем значение меньше.

Формула выглядит таким образом:

R = E/(S·t), [Дж/(м2с)] = [Вт/м2]

Ещё одной характеристикой остаётся спектральная плотность энергетической светимости.

Важно ввести ещё одно понятие: коэффициент поглощения – это отношение поглощенной телом энергии к падающей энергии. Только теперь перейдем непосредственно к выделенному закону. Первое, что нужно сказать, что тепловое излучение является равновесной величиной.

Это указывает на то, что сколько энергии будет излучаться телом, столько и им же и поглотится. При расчётах данное заявление имеет существенное значение. Можно сразу приравнивать оба значение.

Таким образом, для трёх тел, которые находятся в замкнутой полости, формула примет вид:

Закон для теплового излучения

Раннее указанная формула будет верной даже тогда, когда какое-либо тело из указанных будет АЧ:

Закон звучит данным образом: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Законы Кирхгофа в комплексной форме

Итак, для того, чтобы вывести математическую формулировку первого закона в комплексной формуле, необходимо представить все синусоидальные токи в комплексных значениях. Формула примет данный вид:

Комплексная форма первого закона Кирхгофа

Расшифровывая формулу получим, что алгебраическая сумма комплексных значений токов всех ветвей, которые сходятся в узле цепи, будет равняться нулю.

Закон №2 сформулирован не менее просто. Для контура замещения, который содержит лишь неактивные элементы и источники ЭДС, в каждую секунду алгебраическая сумма напряжений на данных элементах контура равняется числовой сумме ЭДС. Некоторым может показаться данная формулировка трудной, но при реальном разборе станет ясно, что все весьма просто и элементарно:

Комплексная форма второго закона Кирхгофа

Например, рассмотрим рисунок. Для выбранного на схеме замещения контура 1

u1-u2-u3+u4=0

Для второго контура:

ur-uL=e1-e2

В комплексной записи закон выглядит таким образом:

Контур 1

Контур 2

Задачи и примеры на законы Кирхгофа с решением

На картинках ниже подробно разобраны 2 задачи с применением законов Кирхгофа. Полное решение с наглядным примером на схемах и ответ.

Пример решения задачи по законам Кирхгофа

Источник: https://meanders.ru/vse-zakony-kirhgofa-formuly-i-opredeleniya.shtml

Задачи на правило Кирхгофа с решением

Примеры решения задач по закону кирхгофа

Мы уже писали про закон Ома, а также параллельное и последовательное соединение проводников. Но это были цветочки. Сегодня разберемся с задачами посложнее: посмотрим, как решаются задачи на правила Кирхгофа.

Не забывайте подписаться на наш телеграм-канал: там вас ждут актуальные новости сферы образования, полезные лайфхаки и скидки для студентов.

Как решать задачи по правилу Кирхгофа? Прежде, чем приступать к решению задач, обязательно изучите теорию. Также мы подготовили для вас универсальную памятку по решению физических задач.

Задача №1 на эквивалентные преобразования соединений проводников

Условие

Преобразуйте схему с помощью эквивалентных преобразований.  

Решение

Кроме основных формул для последовательного и параллельного соединения проводников, существуют формулы для преобразования звезды резисторов в эквивалентный треугольник и наоборот. Треугольник резисторов R2 R3 R4 можно преобразовать в эквивалентную звезду RB RB RD по формулам:

Преобразованная схема будет выглядеть следующим образом:

Ответ: см. выше.

Правила Кирхгофа применяются для сложных цепей(например, для цепей с несколькими источниками питания), когда эквивалентные преобразования не приносят результата.

Задача №2 на первое правило (закон) Кирхгофа

Условие

Необходимо составить уравнения по первому закону Кирхгофа для следующей цепи:

Решение

В данной цепи 4 узла. По первому закону составляем 3 уравнения (на 1 уравнение меньше, чем количества узлов):

Ответ: см. выше.

Для решения задач на правила Кирхгофа необходимо уметь решать системы линейных уравнений. Для решения сложных систем удобно использовать специальные программы: MathCad, MatLab и т.д.

Далее для наглядности рассмотрим задачу с более простой схемой.

Задача №3 на правила Кирхгофа

Условие

Два источника питания E1=2В и E2=1В соединены по схеме, показанной на рисунке. Сопротивление R=5 Ом. Внутреннее сопротивление источников одинаково и равно r1=r2=1 Ом. Определить силу тока, который проходит через сопротивление.

Решение

По первому закону Кирхгофа сумма токов, сходящихся в узле, равна нулю (токи обозначим произвольно):

Выберем направление обхода верхнего контура против часовой стрелки. По второму закону Кирхгофа, сумма падений напряжений в контуре равна сумме ЭДС:

Запишем то же самое для второго контура, обходя его по часовой стрелке:

Объединим уравнения с неизвестными токами в систему:

Чтобы решить систему, выразим силу тока I1 из второго уравнения, а силу тока I2 – из третьего:

Первое уравнение теперь можно записать в виде:

Выражая искомый ток и подставляя значения из условия, получаем:

Ответ: 1,5 А.

Задача №4 на правила Кирхгофа

Условие

Дана схема электрической цепи. Необходимо:

  • обозначить сопротивления, над каждой ветвью указать свой ток и источники ЭДС;
  • указать на схеме направления токов и ЭДС;
  • составить уравнения по первому и второму закону Кирхгофа.

Решение

Приведем схему, обозначив сопротивления, ЭДС и токи:

В схеме 7 токов и 4 узла. Необходимо составить 4 – 1 = 3 уравнения по первому закону Кирхгофа и 7 – 3 = 4 уравнения по второму закону Кирхгофа.

Первый закон Кирхгофа:

Второй закон Кирхгофа (выбранные контуры К1, К2, К3, К4 указаны на рисунке):

Ответ: см. выше.

Задача №5 на правила Кирхнофа

Условие

Определить все токи в ветвях, составив систему уравнений по законам Кирхгофа.

Параметры цепи: E1 = 40 В, E2 = 50 В, E3 = 60 В, R01 = 0,1 Ом, R02 = 0,3 Ом, R03 = 0,2 Ом, R1 = 4,4 Ом, R2 = 4,7 Ом, R3 = 4,6 Ом, R4 = 5,2 Ом, R5 = 7,6 Ом.

Решение

Направления токов в ветвях цепи и направления обхода контуров указаны на схеме. Цепь содержит 3 узла и 3 независимых контура. Таким образом, для расчета токов в ветвях необходимо составить два уравнения по первому закону Кирхгофа и три по второму:

Подставим числовые значения и решим систему уравнений:

Ответ: I1=10,68 А; I2=8,388 А; I3=7,192 А; I4=4,9 А; I5=2,292 А.

Вопросы на правила Кирхгофа

Вопрос 1. Сформулируйте первый закон Кирхгофа.

Ответ. Первый закон Кирхгофа связан с сохранением заряда и формулируется следующим образом:

Для любого узла электрической цепи алгебраическая сумма токов ветвей, подключенных к данному узлу, равна нулю.

Первое правило Кирхгофа является следствием закона сохранения электрического заряда, согласно которому ни в какой точке заряды не могут безгранично накапливаться: количество электричества, притекающее к данной точке за определенный промежуток времени, должно быть равно количеству электричества, оттекающему от неё.                                              

Вопрос 2. Как следует выбирать направления токов в ветвях электрической цепи?

Ответ. Направления токов во всех ветвях электрической цепи задаются произвольно до составления уравнений. Токи, входящие в узел, принято считать положительными, а выходящие из узла – отрицательными.

Вопрос 3. Как формулируется второй закон Кирхгофа?

Ответ. Второй закон Кирхгофа связан с законом сохранения энергии и формулируется следующим образом:

Алгебраическая сумма всех ЭДС контура электрической цепи равна алгебраической сумме напряжений и алгебраической сумме падений напряжений на всех его участках.
 

Вопрос 4.  Что следует учитывать при составлении уравнений второго закона Кирхгофа для цепи и ее конкретного контура.

Ответ. Перед составлением уравнений второго закона Кирхгофа для цепи необходимо произвольно выбрать направления токов во всех ветвях цепи и определить направление обхода контура.

При составлении уравнения для конкретного контура учитываются:

  • токи, входящие в узлы принимаются положительными;
  • ЭДС источников принимаются положительными, если 
  • направления их действия (стрелка) совпадает с выбранным направлением обхода (независимо от направления тока в них);
  • падения напряжений в ветвях (IkRk) принимаются положительными, если положительное направление тока совпадает с выбранным направлением обхода;
  • напряжения Uk, включенные в контур, принимаются положительными, если эти напряжения создают ток, направленный также как и направление обхода (направление напряжения, определяемое стрелкой, совпадает с направлением обхода).

Вопрос 5. Что такое эквивалентные преобразования последовательного и параллельного соединения пассивных элементов?

Ответ. Задачей эквивалентного преобразования последовательного и параллельного соединения пассивных элементов, является последовательное упрощение исходной схемы и нахождение эквивалентного сопротивления схемы.

Нужна помощь в решении задач и других студенческих заданий? Профессиональный сервис помощи учащимся окажет оперативную помощь с выполнением любой работы.

Источник: https://Zaochnik.ru/blog/zadachi-na-pravilo-kirhgofa-s-resheniem/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.